Morphological changes in the corpus callosum: A study using joint Riemannian feature spaces

Meena Mani^{1,*} Anuj Srivastava² Christian Barillot ¹

¹Visages Project, INRIA/IRISA, Rennes, France

*currently at Center for Magnetic Resonance Research, Univ. of Minnesota, USA

²Department of Statistics, Florida State University, Tallahassee, USA

SPIE Medical Imaging 2013 February 10, 2013

Fiber Tracts in the Corpus Callosum

position

orientation

scale

shape

shape

scale

scale

position orientation scale shape

These features either individually or in combination can be used to design feature spaces and metrics

Joint Manifolds

- S_1 : Shape + scale + orientation + translation
- S_2 : Shape + scale + orientation
- S_3 : Shape + scale
- \mathcal{S}_4 : Shape + orientation
- \mathcal{S}_5 : Shape

[†] M. Mani, S Kurtek, C. Barillot, A. Srivastava. *A Comprehensive Riemannian Framework for the Analysis of White Matter Fiber Tracts*, In ISBI '2010.

Joint Manifolds

- S_1 : Shape + scale + orientation + translation
- S_2 : Shape + scale + orientation
- S_3 : Shape + scale
- \mathcal{S}_4 : Shape + orientation

• \mathcal{S}_5 : Shape

[†] M. Mani, S Kurtek, C. Barillot, A. Srivastava. *A Comprehensive Riemannian Framework for the Analysis of White Matter Fiber Tracts*, In ISBI '2010.

M. Mani

Manifold	distance metric		
shape +			
scale +	$d(\beta_1,\beta_2)=\ h_1-(h_2,\gamma^*)\ $		
orientation +			
translation			
shape +			
scale +	$d(\beta_1,\beta_2)=\ q_1-(q_2,\gamma^*)\ $		
orientation			
shape $+$	$d(\beta_{r},\beta_{r}) - \ q_{r} - O^{*}(q_{r},\gamma^{*})\ $		
scale	$u(p_1, p_2) = q_1 - o(q_2, \gamma) $		
shape $+$	$d(\beta_t, \beta_0) = \min_{z \in \mathbb{Z}} \left(\cos^{-1} \left(\int_0^1 / (q_t, \gamma)(t) (q_0, \gamma)(t) \right) dt \right)$		
orientation	$\mathbf{d}(\beta_1,\beta_2) = \min_{\gamma \in \mathbf{I}} \left(\cos^2 \left(\int_0^{\infty} \langle (\mathbf{q}_1,\gamma)(t), (\mathbf{q}_2,\gamma)(t) \rangle \mathbf{d} t \right) \right)$		
shape	$d(eta_1,eta_2)=\min\left(\cos^{-1}(\int_0^1{\langle(q_1,\gamma)(t),O^*(q_2,\gamma)(t) angle dt)} ight)$		

Illustration: Clustering Fibers in the Corpus Callosum

Approaches:

typically volume-based

 e.g. divide CC into well-defined partitions; analyze width, thickness

tract-based studies:

- focus on microstructure evaluations
- studies utilizing geometrical properties of tracts less common

Data Set

• 2 curves

- LC: section of the rostrum
- UC: section of the genu

• 10 control subjects

- ▶ 22 42 years
- male
- right handed

• 10 MS subjects

- on average, 10 years since onset of disease
- age-matched
- primarily female

Mean Curves of a DTI Fiber Bundle: Genu

Mean Curves of a DTI Fiber Bundle: Genu

Mean Curves of a DTI Fiber Bundle: Genu

Shape Manifold

control

MS

Shape+Orientation Manifold

control

Shape+Orientation Manifold

control

MS

shape orientation shape+

control

Within-group variance for distance distributions

	LC-LC	UC-UC	LC-UC	
shape	NC	0.0026	0.0048	0.0030
Shape	MS	0.0089	0.0039	0.0089
shape orientation	NC	0.0032	0.0043	0.0040
shape+onentation	MS	0.0080	0.0108	0.0176

 \dagger Distances between the same curve (d = 0) were not included

Within-group variance for distance distributions

	LC-LC	UC-UC	LC-UC	
shape	NC	0.0026	0.0048	0.0030
Shape	MS	0.0089	0.0039	0.0089
chang orientation	NC	0.0032	0.0043	0.0040
shape+onentation	MS	0.0080	0.0108	0.0176

 \dagger Distances between the same curve (d = 0) were not included

Summary

Using only 10 MS subjects and 10 NC for comparison, we demonstrate an effective new design that uses *shape* and *shape+orientation* distances to study shape and morphological changes

- variability is suggestive of alterations to callosal shape that accompany illness progression
- develop methods to identify and track progressive white matter disease
- such tools can improve the clinical evaluation and treatment of patients suffering from MS