BPhy 8147 – Advanced Physics of MRI Fall Semester, 2005

C	Cheryl Olman*	6-7601	cheryl@cmrr.umn.edu	243 Elliott
F	Pat Bolan	6-2001	bolan@cmrr.umn.edu	108.1 CMRR
Ν	Aalgorzata (Gosia) Marjanska	4-4580	gosia@cmrr.umn.edu	105 CMRR
ł	Kamil Ugurbil	6-9592	kamil@cmrr.umn.edu	102C CMRR
F	Pierre-Francois Van de Moortele	5-8397	pfvdm@cmrr.umn.edu	102K CMRR
	*instructor of record			

The class will meet Tuesday/Thursday 10:10 – 11:30 at the CMRR (Room 107, Seminar Room). There will be six laboratory sessions which may be scheduled for a different time slot – this will be discussed on the first day of class. Updated schedules, assignments and answer keys, and supplemental readings will be posted on the course website: <u>http://www.cmrr.umn.edu/class/Bphy8147</u>

Course Description

NMR (nuclear magnetic resonance) and MRI physics, spatial selection and encoding, imaging hardware and system engineering. Imaging sequences, associated contrast/resolution. NMR spectroscopy with an emphasis on *in vivo*. Recent developments in MRI.

Homework assignments will be provided weekly, and there will be a final exam. Lab assignments will be integrated with the lectures and crucial for course completion; CMRR site-specific safety training will be required for lab participation.

Grading and Attendance Policy

The course is offered for three credits, graded on an A-F basis (93 - 100 A, 90 - 92 A-, 88 - 89 B+ ... <60 F).

- Homework will comprise 50% of the course grade.
- Lab participation and attendance will comprise 30% of the course grade.
- The final exam will contribute 20% of the course grade.

Textbooks and Other Readings

No required textbook. Copies of relevant materials will be provided. Suggested texts:

- *Magnetic Resonance Imaging Physical Principles and Sequence Design* by EM Haacke, RW Brown, MR Thompson, R Venkatesan
- Magnetic Resonance Imaging by M. T. Vlaardingerbroek and J. A. den Boer
- Handbook of MRI Pulse Sequences by M. A. Bernstein, K. F. King, and X. J. Zhou
- Spin Dynamics by M. Levitt
- In Vivo Spectroscopy by R. de Graaf

Date	Торіс	Description	Lecturer
9/6	Introduction	Math and (classical) physics reminders	Olman
9/8	Quantum mechanics	Spin-1/2 nuclei: frequency, precession,	Olman
		population distribution, bulk magnetization,	
		chemical shift	
9/13	FID	Relationship between frequency and	Olman
		temporal domains, noise, simple spectra	
9/15	RF pulses, Part I	Excitation, frequency (bandwidth), phase	Olman
9/20	LAB 1	Hardware, introduction to FID, bandwidth (no	Olman
	(9.4T)	imaging gradients)	
9/22	Bloch equations	Derivation; addition of relaxation; steady state	Olman
	,	solution with multiple pulses	
9/27	RF pulses, Part II	90, 180, temporal envelope and frequency	Bolan
	1	selectivity, pulse sequence diagrams	
9/29	Imaging introduction	Gradients, slice selection, readout encoding	Bolan
10/4	Imaging introduction	Phase encoding, 2D FT, k-space	Bolan
10/6	Imaging basics	Gradient echo, spin echo, pulse sequence	Bolan
	5 5	diagrams, 3D imaging	
10/11	LAB 2 (9.4T)	Measure T_1 and T_2 in high resolution	Marjanska,
	See note below*	samples, no localization	Olman
10/13	No class	Minnesota workshop	
10/18	Imaging basics	Interactive rehearsal for imaging laboratory	Bolan
10/20	Fast Imaging	Concepts of k-space coverage, FLASH, EPI,	Van de Moortele
		SPIRAL, fast SE	
10/25	LAB 3 (3T)	Imaging introduction: flip angle, FOV, phase	Bolan
	See note below**	encoding, resolution, etc.	
10/27	Imaging/contrast	Bloch revisited: gray/white/CSF intensity	Ugurbil
	Lyons Research Bldg		-
11/1	Lab 3 (3T) makeup	Imaging introduction: flip angle, FOV, phase	Bolan
	Only for Tues group	encoding, resolution, etc.	
11/3	LAB 4	2D imaging – slow and fast	Van de Moortele
	(4 or 9.4T)		
11/8	Fast Imaging	Details of EPI and SPIRAL, imperfections and	Van de Moortele
		resulting artifacts	
11/10	Imaging/contrast	Magnetization prepared fast imaging. Partial	Ugurbil
		voluming, imaging sequences advantages	
		and disadvantages. Other parts of the body;	
		clinical topics	
11/15	Coils and RF pulses	Tuned circuit, volume and surface coil,	Ugurbil
		advanced RF pulses (adiabatic)	
11/17	LAB 5 (3T)	Contrast in the brain (Siemens)	Olman
11/22	Parallel imaging	Hardware and image reconstruction	Van de Moortele
11/24	No class	Thanksgiving	
11/29	Spectroscopy	Chemical shift, J-coupling (¹ H)	Marjanska
12/1	Spectroscopy	Different nuclei, including spin > 1/2	Marjanska
12/6	Lab 6	Spectroscopy	Marjanska
4.0.10	(4 or 9.4T)		Manianal
12/8	Spectroscopy	Localization (CSI, ISIS, PRESS, STEAM,	Marjanska
40/40	Obline	LASER)	
12/13	Shimming	Concepts, B ₀ field mapping, FASTMAP	Van de Moortele
TBD	Final exam		

* For Lab 2, those groups that normally meet on Tuesdays will meet on Tues 10/11. Those in the Wednesday lab sections will meet on Wednesday 10/12. ** For Lab 3, those groups that normally meet on Tuesdays will meet on Tues 10/25. Those in the Wednesday lab sections will meet on Wednesday 10/126.