Morphological changes in the corpus callosum: A study using joint Riemannian feature spaces

Meena Mani1,* Anuj Srivastava2 Christian Barillot 1

1Visages Project, INRIA/IRISA, Rennes, France
*currently at Center for Magnetic Resonance Research, Univ. of Minnesota, USA

2Department of Statistics, Florida State University, Tallahassee, USA

SPIE Medical Imaging 2013
February 10, 2013
Fiber Tracts in the Corpus Callosum
Fiber Tracts: Physical Features
Fiber Tracts: Physical Features

position
orientation
scale
shape
Fiber Tracts: Physical Features

- position
- orientation
- scale
- shape
Fiber Tracts: Physical Features

- position
- orientation
- scale
- shape
Fiber Tracts: Physical Features

- position
- orientation
- scale
- shape
Fiber Tracts: Physical Features

- position
- orientation
- scale
- shape
Fiber Tracts: Physical Features

- position
- orientation
- scale
- shape

These features either individually or in combination can be used to design feature spaces and metrics.
Joint Manifolds

- S_1: Shape + scale + orientation + translation
- S_2: Shape + scale + orientation
- S_3: Shape + scale
- S_4: Shape + orientation
- S_5: Shape

Joint Manifolds

- S_1: Shape + scale + orientation + translation
- S_2: Shape + scale + orientation
- S_3: Shape + scale
- S_4: Shape + orientation
- S_5: Shape

<table>
<thead>
<tr>
<th>Manifold</th>
<th>distance metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape + scale + orientation + translation</td>
<td>(d(\beta_1, \beta_2) = | h_1 - (h_2, \gamma^*) |)</td>
</tr>
<tr>
<td>shape + scale + orientation</td>
<td>(d(\beta_1, \beta_2) = | q_1 - (q_2, \gamma^*) |)</td>
</tr>
<tr>
<td>shape + scale</td>
<td>(d(\beta_1, \beta_2) = | q_1 - O^(q_2, \gamma^) |)</td>
</tr>
<tr>
<td>shape + orientation</td>
<td>(d(\beta_1, \beta_2) = \min_{\gamma \in \Gamma} \left(\cos^{-1} \left(\int_0^1 \langle (q_1, \gamma)(t), (q_2, \gamma)(t) \rangle , dt \right) \right))</td>
</tr>
<tr>
<td>shape</td>
<td>(d(\beta_1, \beta_2) = \min \left(\cos^{-1} \left(\int_0^1 \langle (q_1, \gamma)(t), O^*(q_2, \gamma)(t) \rangle , dt \right) \right))</td>
</tr>
</tbody>
</table>
Illustration: Clustering Fibers in the Corpus Callosum

(a) shape + scale + orientation

(b) shape
Study: Morphological Changes in the Corpus Callosum
Study: Morphological Changes in the Corpus Callosum

Approaches:

1. typically volume-based
 - e.g. divide CC into well-defined partitions; analyze width, thickness

2. tract-based studies:
 - focus on microstructure evaluations
 - studies utilizing geometrical properties of tracts less common
Study: Morphological Changes in the Corpus Callosum
Study: Morphological Changes in the Corpus Callosum
Study: Morphological Changes in the Corpus Callosum
Data Set

- **2 curves**
 - LC: section of the rostrum
 - UC: section of the genu

- **10 control subjects**
 - 22 - 42 years
 - male
 - right handed

- **10 MS subjects**
 - on average, 10 years since onset of disease
 - age-matched
 - primarily female
Mean Curves of a DTI Fiber Bundle: Genu
Mean Curves of a DTI Fiber Bundle: Genu

fiber bundle

shape
Mean Curves of a DTI Fiber Bundle: Genu

fiber

bundle

shape

orientation

shape+i

M. Mani

Feb 2013
Distance Maps
Distance Maps

\begin{center}
\begin{tabular}{|c|c|}
\hline
I & II \\
\hline
LC–LC & LC–UC \\
\hline
III & IV \\
\hline
UC–LC & UC–UC \\
\hline
\end{tabular}
\end{center}
Distance Maps

Shape Manifold

control

MS
Distance Maps

Shape + Orientation Manifold

control
Distance Maps
Shape+Orientation Manifold

control

MS
Distance Maps

shape

shape+ orientation

control MS
Within-group variance for distance distributions

<table>
<thead>
<tr>
<th></th>
<th>LC-LC</th>
<th>UC-UC</th>
<th>LC-UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>0.0026</td>
<td>0.0048</td>
<td>0.0030</td>
</tr>
<tr>
<td>MS</td>
<td>0.0089</td>
<td>0.0039</td>
<td>0.0089</td>
</tr>
<tr>
<td>shape+orientation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>0.0032</td>
<td>0.0043</td>
<td>0.0040</td>
</tr>
<tr>
<td>MS</td>
<td>0.0080</td>
<td>0.0108</td>
<td>0.0176</td>
</tr>
</tbody>
</table>

† Distances between the same curve (d = 0) were not included
Within-group variance for distance distributions

<table>
<thead>
<tr>
<th></th>
<th>LC-LC</th>
<th>UC-UC</th>
<th>LC-UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>0.0026</td>
<td>0.0048</td>
<td>0.0030</td>
</tr>
<tr>
<td>MS</td>
<td>0.0089</td>
<td>0.0039</td>
<td>0.0089</td>
</tr>
<tr>
<td>shape+orientation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>0.0032</td>
<td>0.0043</td>
<td>0.0040</td>
</tr>
<tr>
<td>MS</td>
<td>0.0080</td>
<td>0.0108</td>
<td>0.0176</td>
</tr>
</tbody>
</table>

† Distances between the same curve (d = 0) were not included
Summary

Using only 10 MS subjects and 10 NC for comparison, we demonstrate an effective new design that uses shape and shape+orientation distances to study shape and morphological changes.

- Variability is suggestive of alterations to callosal shape that accompany illness progression.
- Develop methods to identify and track progressive white matter disease.
- Such tools can improve the clinical evaluation and treatment of patients suffering from MS.