Solutions to Homework 1: MATLAB Basics

Contents

- Problem 0
- Problem 1
- Problem 2
- Problem 3
- Problem 4
- Problem 5

Problem 0

```
load('Homework1.mat');
```

Problem 1

```
set1 = randn(1,1000);
set2 = randn(1,1000);
figure;
scatter(set1,set2,'r.');
xlabel('Condition A');
ylabel('Condition B');
```


Problem 2

```
result = sum(data1(1,:)) / sum(data1(2,:));
result
```

```
result = 0.438566552901024
```

Problem 3

```
figure;
hold on;
hA = plot(timeA, valsA, 'r-');
hB = plot(timeB, valsB, 'g-');
xlabel('Time');
ylabel('Value');
title('Time-series data for two signals');
legend([hA hB], {'Signal A' 'Signal B'});
```


Problem 4

```
x = [3 -1 1.5; 2 0 0; 1 1 1];
x(end+1,:) = 1;
x(1,end) = 0;
result = x(:,end)';
result
```

```
result = 0 0 1 1
```

Problem 5

```
result = checkpositive([4 1 1; -1 0 0; 0 0 0; .1 .2 .1]);
result
```

```
Row 1: yes
Row 2: no
Row 3: no
Row 4: yes

result =

1 0 0 1
```

Published with MATLAB® R2012b

```
Page 1 of 1
Printed For: kendrick
```

```
1 function f = checkpositive(x)
2
3
  % function f = checkpositive(x)
4
  % <x> is a 2D matrix
  %
6
  % Determine whether the numbers in each row are all positive.
7
  % We return a row vector where the nth element is 1 if all
  % numbers in the nth row are positive and 0 if not. We
10 % also report the results to the command window.
11 | %
  % Example:
12
13 \% f = checkpositive([1 2; -1 1]);
14
  % check if elements in each row are all positive
15
16 | f = all(x > 0,2);
17
18 % return as row vector
19 f = f';
20
21
  % report results to command window
  for p=1:length(f)
22
23
     if f(p)==1
       fprintf('Row %d: yes\n',p);
24
25
       fprintf('Row %d: no\n',p);
26
27
     end
28
  end
29
```