
Statistics and Data Analysis in MATLAB
Kendrick Kay, kendrick.kay@wustl.edu

MATLAB Basics I

1. The MATLAB environment
- Variables hold things, such as numbers, matrices, strings, etc. Variable names are simple

alphanumeric strings (e.g. rec, ABC, or var123).
- The workspace is the collection of variables that currently exist. Variables can be defined by

the user, or can be loaded into the workspace from a file. Variables can be saved from the
workspace to a file. When the MATLAB session ends (i.e. MATLAB is quit), the workspace is
lost.

- The command window is where you interact with MATLAB. The command prompt (>>) is
where you type a command.

- The GUI (graphical user interface) is all the pretty stuff that surrounds the command window
(menus, other windows, etc.). The GUI is helpful for various things (e.g. debugging, managing
files) but is not essential. You can run MATLAB without the GUI.

- Functions accept input and return output. There are built-in functions (e.g. inv) that have no
readable source code, functions that come with MATLAB (e.g. mean) that have readable
source code, and user-written functions. Importantly, functions cannot access nor modify the
workspace except through inputs and outputs.

- Scripts are text files that consist of a series of MATLAB commands. Scripts are similar to
user-written functions (which are also text files consisting of a series of MATLAB commands).
However, the crucial difference is that scripts do not operate on inputs and outputs. Rather,
scripts have direct access to the workspace, so they can freely read variables from the
workspace and write variables to the workspace.

- Functions and scripts written by the user are saved as .m files. These are text files.
- MATLAB saves variables into .mat files. These are binary files that can be read by MATLAB.

2. Interacting with MATLAB
- To interact with MATLAB, just type a command into the command window.
- If a command is not ended with ;, the result of evaluating the command is displayed in the

command window.
- If the output is not assigned to a variable, it is automatically assigned to a variable called ans.
- Typically, a command is either an expression (e.g. 1+1) or an assignment (e.g. a=1+1).

3. Basic commands for navigating the MATLAB environment
- whos - provide information on variables that currently exist in the workspace
- clear <variable name> - remove the variable from the workspace
- clear all - remove all variables from the workspace
- help <function> - get help on a function
- type <function> - show the code that underlies a function
- edit <function> - edit the code that underlies a function
- which <function> - show the location of the file that defines the function
- cd <path> - change directory
- pwd - print the current working directory

- ls - list files in current working directory
- load <.mat file> - load the variables contained in the .mat file into the workspace
- save <.mat file> - save the variables in the current workspace to the .mat file

4. Basic data types
- The double data type is the standard MATLAB data type, allowing storage of numbers in

double precision (e.g. 5, -1.234, 3.14159265358979).
- The single data type has less precision than double and takes up half as much memory

(e.g. 3.141593). Unless memory is an issue, you do not need to worry about using single.
- The logical data type consists of 0s and 1s, which mean false and true, respectively.
- The char data type allows characters, such as 'a', 'T', and '!'. Characters can be

concatenated together into strings, such as 'abc' and 'The dog'.
- The cell data type allows different data types to be collected together (e.g. {1 'a'}).
- There are also integer data types such as uint8 and int16.
- Most of the time, numbers will be finite. However, there are special keywords that indicate

non-finite numbers. These include NaN (not-a-number), Inf (infinity), and -Inf (negative
infinity). NaNs are often used to indicate missing values.

5. Everything is a matrix
- Data in MATLAB are stored as matrices (also known as arrays). The individual components

that compose a matrix are called elements.
- Matrices can be constructed from different data types. For example, you might have a double

matrix or a logical matrix.
- A single number, or scalar, is a matrix with dimensions 1 x 1 (e.g. 5).
- A vector is a matrix that has a dimensionality of 1 in all but one dimension. Typically, a vector

is a row vector (e.g. [5 6 7] which has dimensions 1 x 3) or a column vector (e.g. [5; 6;
7] which has dimensions 3 x 1).

- Matrices are often two-dimensional (e.g. [1 2 3; 4 5 6; 7 8 9]) but can have
arbitrary dimensionality (e.g. zeros(10,10,10,10)).

- It is possible for a matrix to be empty (no elements). The empty matrix is given by [].
- Strings are vectors of characters (e.g. 'abc' is a char vector of length 3).
- Cells are matrices that consist of heterogeneous elements (e.g. {1 'abc'} is a cell vector of

length 2).
- Matrices can be created through the use of brackets ([]). Semicolons (;) indicate the end of a

row. Matrices can also be created through the use of functions, such as zeros, ones, and
rand. Cell matrices can be created through the use of curly brackets ({ }).

6. Indexing into matrices
- To access the elements of a matrix, we use indexing. Indexing is accomplished through the use

of positive integers referring to the various positions in a matrix. MATLAB's convention is to
use 1-indexing, meaning that the first element is indexed by 1. For example, b(5,[1 3])
refers to the first and third elements in the fifth row of b; when evaluated, the expression
returns a row vector with two elements.

- The colon (:) is a special symbol that means all indices along a given dimension.
- The keyword end is a shortcut for the index of the last element along a given dimension.

- For the purposes of indexing, MATLAB can automatically treat a matrix as a vector. For
example, b(100) refers to the 100th element of b (regardless of the dimensionality of b). The
order of indexing is row-first. For example, suppose a = [1 2; 3 4]. Then, a(2) is equal
to 3.

- Indexing can also be used to selectively modify the contents of a matrix. This is done by using
indexing on the left-hand side of an assignment. For example, b(3,:) = [1 2 3] changes
the contents of the third row of b.

- A special indexing shortcut is b(:) which returns all of the elements of b as a column vector.
- It is possible to assign a scalar to multiple elements. This is because MATLAB automatically

repeats the scalar for you. For example, b(3,:) = 7 is a valid command that sets all
elements in the third row of b to 7.

7. Useful matrix-manipulation operations
size - return the dimensionality of a matrix
 size([1 2 3]) à [1 3]
length - return the number of elements in a vector
 length([1 2 3]) à 3
reshape - change the dimensionality of a matrix without altering its contents
 reshape([1 2 3 4],[2 2]) à [1 3; 2 4]
permute - change the order of dimensions of a matrix
 permute([1 2 3 4],[2 1]) à [1; 2; 3; 4]
' - swap the dimensions of a 2D matrix
 [1 2 3 4]' à [1; 2; 3; 4]
repmat - replicate the contents of a matrix, forming a larger matrix
 repmat([1 2],[1 3]) à [1 2 1 2 1 2]
bsxfun - automatically apply repmat as required by certain function calls
 bsxfun(@plus,[1 2 3],[5 5 5; 6 6 6]) à [6 7 8; 7 8 9]
find - convert logical indices into integer indices
 find([2 5 6 2]==2) à [1 4]

8. Basic mathematical operations
+ - * / ^ - add, subtract, multiply, divide, exponentiate
 1+1 à 2
 2*[4 6] à [8 12]
 2^3 à 8
sqrt - square root
 sqrt([4 25]) à [2 5]
exp - exponential
 exp(1) à 2.718
log, log10 - natural logarithm, base-10 logarithm
 log10(100) à 2
abs - absolute value
 abs(-3) à 3
.+ .- .* ./ .^ - apply operations element-wise
 [2 4 6].*[3 1 2] à [6 4 12]
round, floor, ceil - convert decimals to integers
 floor(5.1) à 5
min, max - find the minimum or maximum
 min([10 2 5]) à 2
sum - add all elements
 sum([1 2 3]) à 6

9. Other operations
< > <= >= == ~= - various logical comparisons
 5 > 4 à 1
 [10 0 1] == 10 à [1 0 0]
: - construct a series of equally spaced numbers
 1:.5:3 à [1 1.5 2 2.5 3]
 5:-1:1 à [5 4 3 2 1]
 5:8 à [5 6 7 8]
mean, median, std, var, prctile - statistical operations
 median([1 2 3]) à 2
 prctile([1 2 3],50) à 2
sort, union - list operations
 sort([3 1 2 2]) à [1 2 2 3]
 union([1 2],[4 2 2 1]) à [1 2 4]
rand, randn, randperm - randomization operations
 randn(1,5) à [1.368 0.656 1.931 1.826 -1.206]
 randperm(5) à [2 4 5 3 1]
fprintf, sprintf - text-printing operations
 fprintf('%.5f',pi) à '3.14159' is written to the command window
 fprintf('The answer is %d.',10) à 'The answer is 10.' is written to the command window
isempty, isnan, isfinite - data-checking operations
 isempty([]) à 1
 isnan([1 NaN 10]) à [0 1 0]
 isfinite([1 2 Inf NaN]) à [1 1 0 0]
fopen, fclose - file-manipulation operations
 fid = fopen('test.txt','w');
 fprintf(fid,'%d %d %d',1,2,3);
 fclose(fid); à '1 2 3' is written to a file called 'test.txt'

