
Statistics and Data Analysis in MATLAB
Kendrick Kay, kendrick.kay@wustl.edu

MATLAB Basics II

1. Figures and plotting
figure - create a figure window
hold on - hold figure so that new plot elements will add to (not replace) existing elements
plot - draw lines
scatter - draw a scatter plot
bar - draw bar chart
hist - draw histogram
image, imagesc - draw a 2D matrix as an image
axis - obtain or change axis bounds
xlabel, ylabel - add a label to the x- or y-axis
title - add a title
legend - add a legend
colormap - obtain or change the colormap
colorbar - add a colorbar
get - get properties of a plot element
set - set properties of a plot element
gcf - get handle of current figure
gca - get handle of current axis
print - print figure to an image file (e.g. PNG, EPS)
close - close figure window
subplot - split a figure into multiple smaller plots

2. Flow control
if ... else ... end - if something is true, do this; otherwise, do that
while ... end - while some condition is true, repeat statements
for ... end - for each iteration, repeat statements
switch ... case ... end - execute different statements depending on value of a variable
break - exit a for- or while-loop prematurely
continue - jump to the next iteration in a for- or while-loop

3. Boolean operators
&& - if something is true AND something is true
|| - if something is true OR something is true
~ - NOT
all - return true if all elements are true
any - return true if any element is true

4. Path issues
- The path is a collection of directories within which MATLAB searches for .m files. In order

for MATLAB to recognize the existence of a function (or script), that function (or script) must
exist on the path.

- The current working directory is automatically included in the path.

- If there are multiple .m files that share the same name, one of the files takes precedence. To
determine which file has precedence, use the which command.

5. Path-related commands
path - get the current path
addpath - add to the path
genpath - create a path string from a directory, including all sub-directories

6. Writing functions
- Writing good functions is extremely important; if done well, programming complex software

can become easy.
- A good function is general (i.e. it can be re-used for different situations) and well-documented

(i.e. the inputs and outputs of the function are clearly described).
- To add comments, use the % symbol. Text following the % symbol is ignored by MATLAB.
- Simple example of a function:

function f = computevectorlength(v)

% function f = computevectorlength(v)
%
% <v> is a vector
%
% Return the length of vector <v> by computing
% the square-root of the sum of the squares
% of the elements of <v>.
%
% Example:
% computevectorlength([1 1])

f = sqrt(sum(v(:).^2));

- Functions can have multiple inputs and multiple outputs. Example of the syntax:

[a,b] = computesomething(x,y)

 where x and y are two distinct inputs and a and b are two distinct outputs.

7. Function handles, anonymous functions
- The @ symbol allows one to create a function handle, which is a reference to a function.

Function handles are useful for passing functions to functions.
- The @ symbol also allows one to create an anonymous function. An anonymous function is a

function that is defined on-the-fly and does not have an .m file associated with it. Anonymous
functions can make certain programming tasks easier (since one does not have to create and
save .m files).

8. Debugging
- If MATLAB crashes, the last command you issued in the command window does not take
effect (e.g. if the command was an assignment, the assignment does not occur).
- To help figure out why the crash happened (if it isn't already obvious from the error message),
you can use MATLAB's built-in debugger.

- The debugger essentially allows you to step through your code one line at a time. After each
step, you can check the workspace, check the contents of variables, and/or issue MATLAB
commands, which can all be useful for figuring out what's going on.
- The GUI includes various buttons and widgets that can be helpful when debugging.

9. Debugging-related commands
dbstop - tell MATLAB when (i.e. in what function) to enter debugging mode
dbstep - in debugging mode, this tells MATLAB to execute the next line of code
dbstep in - like dbstep except that we step into function calls (so that we can debug them)
dbcont - in debugging mode, this tells MATLAB to execute all remaining lines of code
dbquit - in debugging mode, this tells MATLAB to get out of debugging mode
dbclear - clear debugging breakpoints set by dbstop

