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Lecture 3: Model specification 
 
1. Correlation is a simple case of model building 
- When computing the correlation between two variables x and y, we are implicitly fitting the 
linear model y = ax + b where a and b are free parameters. We can say that x is an input variable, 
y is the output variable, and the model attempts to predict the output variable based on the input 
variable. Alternatively, we can say that x is a regressor, y is the data, and the model attempts to 
explain the data using the regressor. 
- The link between correlation and linear models can be understood as follows: after z-scoring 
each variable, the slope of the line that best predicts y from x is equal to the correlation value r. 
- Thus, correlation is a simple case of model building in which we use a linear model to predict 
one variable based on another. But what if we have more than one input variable? Or what if the 
phenomenon we are trying to model is nonlinear? To tackle these cases, we must obtain a more 
explicit understanding of model building. 
 
2. Overview of model building 
- To keep things simple, it is useful to break down model building into four distinct issues. 
- Model specification refers to choosing the specific type of model to apply to the data. For 
example, do we use a simple linear model or a complicated nonlinear model? (In the case of 
correlation, a linear model is implicitly being applied.) 
- Model fitting refers to estimating the free parameters of a given model based on the observed 
data. (In the case of correlation, the parameter of interest, r, is computed through a simple 
sequence of mathematical operations.) 
- Model accuracy refers to quantifying how well a fitted model describes the data. The tricky 
issue here is the potential for a model to overfit the data. (In the case of correlation, the analogue 
of model accuracy is r2 as it indicates the amount of variance in one variable that can be 
explained by the other.) 
- Model reliability refers to quantifying the reliability of the parameters of a fitted model. In 
other words, how confident are we with regards to the parameters we have estimated from the 
data? (In the case of correlation, the analogue of model reliability is the sampling error on r.) 
- In this lecture, we consider the issue of model specification. 
 
3. Supervised vs. unsupervised learning 
- Statistical models can be broadly divided into models that can be used to perform supervised 
learning and models that can be used to perform unsupervised learning. The idea behind 
learning is that by applying a model to data, we learn something about those data. 
- In supervised learning (e.g. linear regression), we are trying to learn the mapping between one 
or more input variables and an output variable. The problem is supervised in the sense that we 
observe both the input and the output and the goal is clearly defined. 
- In unsupervised learning (e.g. PCA, cluster analysis), we are trying to learn the structure in a 
given set of data. The problem is unsupervised in the sense that we observe only a single set of 
data and there is no clearly defined, explicit goal. 



- For those fluent in probability theory, supervised learning can be viewed as characterizing 
p(y | x) , that is, the probability of output y given input x, whereas unsupervised learning can be 

viewed as characterizing p(x) , that is, the probability distribution underlying a set of inputs x. 
- We will be focusing on supervised learning in this class. 
 
4. Regression vs. classification 
- Both regression and classification involve using one or more input variables to predict an 
output variable. In terms of the problem specification, the only difference between regression 
and classification is the nature of the output variable. If the output variable is continuous, the 
problem is known as regression; if the output variable is discrete, the problem is known as 
classification. 
- There are, nevertheless, complex technical details that arise when getting into the specifics of 
classification models; thus, regression and classification are quite different in the details. 
- We will be focusing on regression models as we learn about model building, and we will 
address classification models later in the course. The rest of this lecture describes different types 
of regression models. 
 
5. Linear models 
- Linear models are models in which the prediction is a weighted sum of the regressors. For 
example, suppose we have regressors xi where i ranges from 1 to n. The prediction of a linear 

model is y = wixi
i=1

n

∑  where wi  is the weight on the ith regressor. 

- To see why y = ax + b counts as a linear model, notice that we can re-write the model as  
y = ax + b1 where 1 is a constant regressor consisting of all ones. Then, if we set x1 = x  and 
x2 = 1 , the model can be re-written as y = w1x1 + w2x2  where w1  and w2  are free parameters. 
- Linear models are easy to understand and easy to fit. However, not all phenomena are linear! 
 
6. Nonlinear models 
- Nonlinear models are models in which the prediction cannot be expressed as a weighted sum of 
the regressors. We can divide nonlinear models into three types. 
 
7. Linearized models 
- One type of nonlinear model is a linearized model. Linearized models are the same as linear 
models except that the input space has been expanded using nonlinear functions (e.g. 
polynomials, Gaussians, sinusoids). 
- For example, suppose we start with the linear model y = ax + b where a and b are free 
parameters. If we expand the input space to include a new regressor x2, we obtain the model  
y = ax2 + bx + c where a, b, and c are free parameters. This new model is nonlinear because the 
prediction of the model is not linear with respect to x. However, the new model can be viewed as 
a linear model with respect to an input space consisting of three regressors, x1 = x

2 , x2 = x , and 
x3 = 1 . 
- Linearized models are as easy to understand and fit as linear models, and has the additional 
benefit of being able to characterize nonlinear phenomena. However, for any given problem, it is 
not clear a priori exactly what type of nonlinear functions to add into the input space. 
 



8. Parametric nonlinear models 
- Another type of nonlinear model is a parametric nonlinear model. Parametric nonlinear models 
can be thought of as any model that can be written down using mathematical operations but 
which cannot be expressed as a linearized model. 
- The key characteristic of linearized models is that they are linear with respect to the free 
parameters in the models. Parametric nonlinear models do not have this feature. 
- For example, consider the model y = xn where n is a free parameter. The output of this model is 
not linear with respect to n (there is no way to express xn as an + b where a and b are weights). 
Thus, the model does not count as a linearized model. 
- Parametric nonlinear models are easy to understand and can characterize nonlinear phenomena. 
However, they are tricky to fit given that they are nonlinear with respect to the free parameters 
(e.g. risk of local minima). 
 
9. Nonparametric nonlinear models 
- A third type of nonlinear model is a nonparametric nonlinear model. Nonparametric nonlinear 
models are essentially very flexible nonlinear models that can be generically applied to arbitrary 
datasets. 
- The distinction between nonparametric nonlinear models and the other types of nonlinear 
models can be hazy, but we can make some generalities: (1) Nonparametric nonlinear models are 
sometimes nonlinear with respect to the free parameters; thus, we cannot categorize them as 
linearized models. (2) Nonparametric nonlinear models make few assumptions on the form of the 
nonlinearity of the model, unlike parametric nonlinear models. 
- Examples of nonparametric nonlinear models include nearest-neighbor methods (predict the 
output based on the nearest input example), local regression (fit a simple model at each point in 
the input space based on nearby data points), and neural networks (use generic basis functions 
such as sigmoidal or radial basis functions to model the output). 
- Nonparametric nonlinear models are flexible and powerful and, in some cases, can also be 
simple and elegant. However, the fitted models may be difficult to interpret and may suffer from 
overfitting and local minima. Also, the computational complexity of nonparametric nonlinear 
models often grows with the size of the dataset and may therefore pose practical problems. 
 
10. Summary of model types 
- Let us review the differences between the various types of models. One difference ("Linear?") 
is whether a given model is linear with respect to the original regressors. A second difference 
("Parametric?") is whether a given model makes strong assumptions on the form of the 
relationship between input and output. A third difference ("Linear in parameters?") is whether a 
given model is linear with respect to its free parameters. 
 
 Linear? Parametric? Linear in parameters? 
Linear models yes yes yes 
Linearized models no yes yes 
Parametric nonlinear models no yes no 
Nonparametric nonlinear models no no sometimes 

 
 
 



 
 
11. Matrix representation of linear models 
- All linear (and linearized) models can be expressed as a weighted sum of one or more fixed 
regressors. We can formally represent this using matrix notation: 
 y = Xw + n 
where y is a set of data points (n × 1), X is a set of regressors (n × p), w is a set of weights (p × 
1), and n is a set of residuals (n × 1). Note that compared to previous formulations of linear 
models, we are now explicitly including a term for the residuals. The residuals are simply the 
difference between the data (y) and the model fit (Xw). 
 


