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Lecture 5: Model accuracy 
 
1. The basics 
- Suppose we have fit a model to a set of data. We would like to know how well the model 
describes the data, that is, model accuracy. Knowing model accuracy helps us decide whether the 
model is useful at all and also helps us choose among multiple competing models. 
- The first thing to do before getting into any details is to look at your data and your model fit. 
This will give you a sense of the data and model and may reveal anomalies (or bugs) in your data 
or model that you should fix up front. 
- To quantify model accuracy, we could in principle use the same metric of squared error (or, 
alternatively, absolute error) that we discussed in the context of model fitting (see Lecture 4). 
However, this metric is difficult to interpret because the magnitude and range of the metric 
depends on the units of the data and the number of data points. 
 
2. Coefficient of determination (R2) 
- A useful metric for model accuracy is the coefficient of determination (R2). Before describing 
R2, we first need to understand variance. Technically, variance is the square of the standard 
deviation: 

variance =
(xi − x )
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where n is the number of data points, xi is the ith data point, and x  is the mean of the data points. 
For intuition, we can ignore the denominator and think of variance as the total squared deviation 
of a set of data points from their mean. 
- R2 is the percentage of variance explained by a model: 

R2 = 100 × 1− unexplained variance
total variance
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where n is the number of data points, di is the ith data point, mi is the model fit for the ith data 
point, and d  is the mean of the data points. There are two main components of the formula. The 
first component is in the numerator and is the sum of the squares of the residuals (which is just 
the usual concept of squared error). The second component is in the denominator and is the sum 
of the squares of the deviations of the data points from their mean. The way the formula works is 
to quantify the variance that is not explained by the model (the numerator), express this as a 
fraction of the total variance (the denominator), subtract the result from one so that we get the 
variance that is explained, and then multiply by 100 to obtain a percentage. (The denominator of 
the variance formula, n – 1, cancels out in the computation of the ratio.) 
- The R2 metric has an upper bound of 100% (corresponding to the case where a model matches 
the data exactly) and does not have a lower bound (since a model can be arbitrarily bad). An R2 
of 0% is achieved by a model that gets the mean of the data correct and nothing else. 



- Note that R2 is not the same as r2. This is because correlation (r) implicitly fits a linear model 
with free parameters (an offset parameter and a gain parameter), whereas coefficient of 
determination (R2) does not include these parameters. It is true that after applying an offset and 
gain to match a set of model predictions to a set of data, then r2 will equal R2. However, the 
correct approach is to include estimation of offset and gain as part of the model-building process 
and then use the R2 metric. 
- Given that R2 involves squaring, it in some sense assumes Gaussian noise (see Lecture 4). One 
could use alternative metrics (such as a version of R2 in which absolute deviations are summed), 
but we will stick with R2 for the purposes of this lecture. In the end, it is important to eyeball 
your data and your model fit to make sure your metric is doing something reasonable. 
 
3. Accuracy on the sample vs. accuracy on the population 
- Now that we understand metric of R2, we could calculate it for the data and the model fit that 
we have. This approach is fine if characterizing the set of data that we have collected is the goal 
of the modeling effort. 
- However, the observed set of data is just one sample from the population, that is, the 
distribution that underlies the data-collection process. We are probably interested not necessarily 
in how well the fitted model describes the sample, but in how well the fitted model describes the 
population. The problem is that the accuracy of a model evaluated on data used to fit the model 
will, on average, overestimate the true accuracy of the model. 
- For example, suppose we knew the true model t (which can be thought of as the underlying 
function that generates the observed data). Imagine that we measure the accuracy of model t by 
obtaining a dataset and calculating how well the model describes the data. The resulting accuracy 
level R2

true reflects the true accuracy of model t. Now suppose we allowed the parameters of the 
model to vary in order to fit the dataset; this produces fitted model f. If we were to calculate how 
well the fitted model describes the dataset, the resulting accuracy level R2

fitted would be larger 
than the original accuracy level: R2

fitted > R2
true. Furthermore, since the parameters of fitted model f 

differ from the parameters of true model t, the fitted model will not perform as well as the true 
model in describing new data. Thus, if we were obtain a new dataset and calculate how well the 
fitted model describes the data, the resulting accuracy level R2

generalize would be less than the 
accuracy level of the true model, R2

true. We can summarize the various relationships as follows: 
R2

fitted > R2
true > R2

generalize. 
- In words, what this means is that after fitting a model to a set of data, the R2 value of the fitted 
model on the observed sample will be larger than the R2 value of the true model on the 
population, which in turn will be larger than the R2 value of the fitted model on the population. In 
practice, we do not know the true model, so the bottom line is that the R2 on the observed sample 
will, on average, be an overestimate of the R2 on the population. 
 
4. Cross-validation 
- To quantify the accuracy of a fitted model, we can use the technique of cross-validation. The 
idea is simple: First, use a set of training data to fit the parameters of a model. Then, use an 
independent set of testing data to evaluate the accuracy of the fitted model. 
- There are various flavors of cross-validation. In leave-one-out cross-validation, a single data 
point is omitted from the fitting process and the fitted model is used to predict that data point. 
The process is repeated for each of the remaining data points. Finally, the model predictions of 
the data points are aggregated and then compared to the data using some metric (such as R2). In 



k-fold cross-validation, the dataset is randomly divided into k parts, and then the process 
proceeds as usual (omit one part from the fitting process, use the fitted model to predict that part, 
omit the next part, etc.). Finally, there can be simple forms of cross-validation, such as collecting 
two sets of data and using one for training and the other for testing. 
- Which cross-validation scheme to use depends on balancing computational time against model 
performance: (1) the larger the number of cross-validation iterations, the more computational 
time will be needed, (2) the larger the amount of data used to fit the model, the better the 
estimates of the model parameters and the higher the model accuracy, and (3) the larger the 
amount of data used in the accuracy calculation, the more reliable the accuracy estimate. Leave-
one-out cross-validation is at one extreme of the spectrum: it involves many cross-validation 
iterations (one for each data point); it uses the maximum amount of data for model fitting; and it 
uses all of the data points to calculate model accuracy. 
- When performing cross-validation with more than one iteration, a tricky issue is that a different 
fitted model is obtained on each iteration. The accuracy level that is obtained can be interpreted 
as the expected accuracy of the model when fitted with a particular amount of data. For example, 
suppose we perform 5-fold cross-validation. The R2 between the model predictions and the data 
can be interpreted as an estimate of the accuracy of the model when fitted on a dataset whose 
size is equal to 80% of the number of data points in the observed dataset. 
- When dividing a data set into different parts for training and testing, it is important to ensure 
that the division is as strict as possible. It is all too easy to slip and allow some dependencies 
between the training and testing data, which will invalidate the idea that the performance on the 
testing data is an unbiased estimate of model accuracy. 
- There are other techniques for quantifying model accuracy. One common method is using an F-
test to assess whether a more complex model produces a significantly better fit than a simpler 
model. However, this approach is applicable only for nested models (where one model is a 
simpler version of a more complex model). Other methods include AIC and BIC which, like 
cross-validation, also attempt to assess the out-of-sample error of a model. Cross-validation 
seems preferable, as it makes fewer assumptions than these approaches and is conceptually 
simpler. However, a drawback of cross-validation is that it is computationally intensive. 
 
5. Model selection 
- With cross-validation, we can use model accuracy as an objective criterion for selecting one 
model over another. The idea is that the best model is the one that, after parameter estimation, 
provides the most accurate description of the mapping between input and output. (Without cross-
validation, comparing the accuracies of different models is not very informative: the model with 
the most flexibility will always be able to provide the best fit to the observed data.) 
- Note that there are other criteria that might be important in model selection. Such criteria 
include simplicity, ease of interpretation, and computational tractability. 
 
6. Overfitting 
- The concept of overfitting is useful for thinking about why cross-validation is important. For 
any given set of data, some of the data is signal and some of the data is noise. When we fit a 
model to data, we should be careful to not fit too much of the data, i.e. overfit the data. This is 
because if we were to fit all of the data, we will have fit not only the signal but also the noise in 
the data. Fitting the noise in the data is undesirable since the resulting model will deviate from 
the true model. In practice, we of course do not know which part of the data is signal and which 



part is noise. But what we can do is to use cross-validation to help us determine when overfitting 
is occurring. 
- For example, suppose the true model underlying a set of data is quadratic, and suppose we are 
fitting a model consisting of polynomials of increasing degree (a constant regressor, a linear 
regressor, a quadratic regressor, a cubic regressor, etc.). As we increase the maximum degree of 
the polynomials in the model, we will invariably fit the data better and better. However, beyond 
a certain point, the improvements in fit will mostly reflect fitting the noise in the data instead of 
the signal. To determine when this overfitting occurs, we can examine the cross-validation 
performance of the model. 
 
7. Simple models vs. complex models 
- It is useful to think of model complexity as a dimension along which models vary. Complex, 
flexible models have the potential to describe many different types of functions. The advantage 
of such models is that the true model (i.e. the model that most accurately describes the 
population from which the data are sampled) may in fact be contained in the set of models that 
can be described. The disadvantage of such models is that they have many free parameters and it 
may be difficult to obtain good parameter estimates with limited or noisy data. On the other 
hand, simple, less flexible models describe fewer types of functions compared to complex 
models. The advantage of simple models is that they have fewer free parameters and so it 
becomes feasible to obtain good parameter estimates with limited or noisy data. The 
disadvantage of simple models is that the types of functions that can be described may be poor 
approximations to the true underlying function. 
- Suppose that for some reason you really want to fit a complex model to some data, but you find 
that the model is overfit. There really isn't any magical solution: you have to either collect more 
data, reduce the noise level, change how the data are sampled, or some combination of these 
approaches. 
- A priori, it is impossible to say whether a simple or complex model will yield the most accurate 
fitted model for a given dataset, since this depends on the amount of data available, the nature of 
the underlying effect, etc. We just have to try different models and see which one works the best. 
 


