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Lecture 7: Classification 
 
1. The basics 
- We have so far been dealing with regression models. Now that we have covered the 
fundamentals of model building, we are ready to address classification models. 
- At the level of model specification (see Lecture 3), the only difference between regression and 
classification is that regression involves a continuous output variable whereas classification 
involves a discrete output variable. 
- To keep things simple, we will only be considering the case where there are two possible values 
for the output variable, i.e. two classes, which we represent as 0 and 1. Strategies for multiclass 
classification is a separate topic. 
- All of the major concepts that we examined in the context of regression models apply to 
classification models: There are different types of classification models including linear and 
nonlinear models (model specification). Each classification model has free parameters that must 
be estimated from the data (model fitting). The accuracy of a classification model is typically 
expressed in terms of percent correct, i.e. percentage of data points correctly classified. Cross-
validation can be used to obtain unbiased accuracy estimates (model accuracy). Bootstrapping 
can be used to obtain error bars on model parameter estimates (model reliability). 
- To visualize classification, we can represent each data point as a dot in n-dimensional space 
(where n is the number of input variables) and color each dot to indicate the class assignment. 
The goal of classification is to construct a model that uses the input variables to predict the class 
assignment. This can be thought of as drawing a line that separates the dots into groups that share 
the same color. 
 
2. Linear classifiers 
- Linear classification models, or linear classifiers, are classification models where the 
separation between the two classes is expressed as a weighted sum of the input variables. For 
example, suppose we have input variables xi where i ranges from 1 to n. The prediction of a 
linear classifier is 
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where wi is the weight on the ith input variable and c is a constant. Notice that linear classifiers 
are identical to linear regression models up to a final thresholding operation that converts model 
outputs into one of two possible values. Also, note that in the formulation above, there is no need 
to add a constant regressor into the model since the flexibility of a constant regressor is already 
contained in the c term. 
- The boundary that separates the two classes is called the decision boundary. For linear 
classifiers, the decision boundary is an n-dimensional hyperplane. This is just a fancy term for 



the following concept: When n = 1, there is one input variable and the decision boundary is a 
point. When n = 2, there are two input variables and the decision boundary is a line. When n = 3, 
there are three input variables, and the decision boundary is a plane. And so on. 
- There are various flavors of linear classifiers, including logistic regression, linear discriminant 
analysis (LDA), linear support vector machines (SVM), nearest-prototype classifiers, and Naive 
Bayes classifiers. All of these implement the same type of model (described above). However, 
different classifiers make different assumptions regarding the nature and distribution of the data, 
and therefore produce different estimates of the parameters of the linear classification model (the 
wi and c terms above). 
 
3. Nonlinear classifiers 
- Nonlinear classification models, or nonlinear classifiers, are classifiers that cannot be 
expressed in the form of a linear classifier. 
- The key characteristic of a nonlinear classifier is that the decision boundary can be nonlinear, 
that is, the decision boundary is not restricted to be a hyperplane. For example, for a two-
dimensional input space, the decision boundary does not have to be a straight line but can instead 
be a curved line or even a circle. 
- A simple way to achieve nonlinear decision boundaries is to expand the input space by 
including nonlinear transformations of the original input variables and then fit a linear model in 
the expanded input space. The reason this works is that linear decision boundaries in the 
expanded input space may be nonlinear in the original space. Note that input expansion is the 
same strategy that underlies linearized regression models (see Lecture 3). 
- There are various flavors of nonlinear classifiers, including classifiers based on a nonlinearly 
expanded input space (but which are otherwise linear), nonlinear support vector machines 
(SVM), and nearest-neighbor classifiers. 
 
4. Details on several types of classifiers 
 
4.1. Logistic regression 
- Logistic regression follows naturally from linear regression. The prediction of a logistic 

regression model is given by y = f wixi
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	  where xi is the ith input variable, wi is the weight 

on the ith input variable, and f (a) = 1
1+ e−a

 is a nonlinear function known as the logistic 

function. Note that a constant input variable should be explicitly included in the model. The only 
difference between a logistic regression model and a linear regression model is that the output is 
passed through the logistic function. 
- Note that the logistic function has a fixed slope in the transition region. Changing the level of 
steepness is achieved not in the logistic function itself but rather through appropriate scaling of 
the weights on the input variables. For example, doubling the weights on the input variables will 
result in increased steepness of the overall function output. 
- The logistic function produces values that lie between 0 and 1. This is nice because it allows us 
to interpret the output of the logistic regression model as a probability value, which then allows 
us to give a probabilistic interpretation of the data. Specifically, we propose that the output 
variable is characterized by a Bernoulli probability distribution with success probability equal to 



the output of the model. For example, let y be the output of the logistic regression model. The 
likelihood that the output variable is 1 is y and the likelihood that the output variable is 0 is 1 – y. 
- Now that we have a probabilistic interpretation of the data, we can use maximum likelihood 
estimation to fit the parameters of the model (the wi terms). First, let's write out the likelihood of 
a given set of data: 
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where d represents the data, m represents the model, n is the number of data points, dj is the jth 
data point (whose value is 0 or 1), and yj is the output of the model for the jth data point. 
Computing the negative-log-likelihood, we obtain: 

 negative-log-likelihood(d | m) = − dj log(yj ) + (1− dj )log(1− yj )( )
j=1
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Finally, we determine the parameters that minimize the negative-log-likelihood using 
optimization techniques. For simplicity we can use the generic nonlinear optimization routines in 
the MATLAB Optimization Toolbox. However, other techniques such as the Newton-Raphson 
method may be more efficient. 
- The predicted class assignment for a given data point is determined by computing the output of 
the model. If the output is greater than 0.5, class 1 is most likely and so that is our prediction. If 
the output is less than 0.5, class 0 is most likely and so that is our prediction. If the output is 
exactly 0.5, we arbitrarily choose class 1. 
 
4.2. Linear discriminant analysis (LDA) 
- In linear discriminant analysis (LDA), we first model the distribution of the two classes before 
determining the decision boundary. A very specific model is posed: we assume that the two 
classes are characterized by multivariate Gaussian distributions with equal covariances (but 
unequal means). After estimating the means of the two distributions and the common covariance 
of the distributions, the decision boundary that optimally separates the distributions is derived. 
This decision boundary turns out to be linear in nature. 
- When its assumptions are met, LDA provides good classification performance. If the 
assumptions are not met, other classifiers may be preferable. 
- LDA is called a generative classifier because it models the distributions of the two classes (and 
can therefore generate samples from each class). In contrast, logistic regression and SVM are 
called discriminative classifiers because they directly determine the decision boundary without 
bothering to model the class distributions. 
- The details of LDA are outside the scope of this class. 
 
4.3. Support vector machines (SVM) 
- Support vector machines (SVM) is a powerful technique that performs especially well for high-
dimensional problems (i.e. problems where there are many input variables compared to data 
points). The key concept in SVM is maximizing the margin, that is, maximizing the distance 
between the decision boundary and the nearest data points in the sample. The idea is that a good 
decision boundary is not just one that successfully classifies the data points but also one that 
maximizes the margin, as this will likely generalize well to novel data. 



- There are both linear and nonlinear versions of SVM. Nonlinearity is achieved through the 
kernel trick. The kernel trick achieves the same result as nonlinear expansion of the input space 
but avoids actual construction of the higher-dimensional space. 
- The details of SVM are outside the scope of this class. 
 
4.4. Nearest-prototype classifiers 
- Nearest-prototype classification is a simple yet effective technique. For each class, we compute 
the centroid of the data points in the sample that are assigned to that class, i.e. the point whose 
coordinates are given by the mean of each input variable. The centroid can be thought of as a 
prototype for the class. To predict the class assignment for a new data point, we simply choose 
the class associated with the centroid that is nearest to the data point. 
- When computing distance, a distance metric is necessary. The metric of Euclidean distance is 
natural but alternatives such as correlation can be used. 
- Nearest-prototype classification is quite flexible as it makes few assumptions regarding the 
underlying model. However, it does allow only linear decision boundaries (assuming that a 
Euclidean distance metric is used). 
- A variation that may be useful for non-Gaussian data is to use the median instead of the mean 
when computing centroids. 
 
4.5. Nearest-neighbor classifiers 
- In this simple yet powerful technique, the predicted class assignment for a new data point is 
simply the class associated with the nearest data point in the sample. 
- Nearest-neighbor classification makes few assumptions regarding the underlying model, and 
can generate nonlinear decision boundaries. 
- A potential disadvantage of nearest-neighbor classifiers is that they may be too sensitive to 
noise in the data. A variation that may improve performance is k-nearest neighbor classification, 
where the predicted class assignment is based on a majority vote from the k nearest data points. 
Averaging across nearby data points reduces the impact of noise on the predicted class 
assignment. 
 


